

April 28, 1961

Final Report

DEVELOPMENT OF HIGH ENERGY BATTERIES

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON 25, D.C.

CONTRACT NO. NASw-111

By: J. E. Chilton E. F. Duffek A. E. Reed SRI Project No. SU-3045

Approved:

R. H. THIELEMANN, CHAIRMAN DEPARTMENT OF METALLURGY

PHYSICAL SCIENCES DIVISION

ABSTRACT

23660

Research conducted on this project shows that primary battery systems with lithium anodes of sufficiently low polarizability are possible in nonaqueous electrolytes. However, the capacity of the cells developed was limited by the high polarization of the cathode, by the resistance of the solution, and by the resistance of the membrane required to prevent contact of the soluble cathode materials. Open circuit values of 3.9 volts were obtained.

Maximum current densities of (25 ma)/cm² have been obtained with lithium anode, propylene carbonate-KCNSH₂O mixtures, and cathode of Halane or KlCl₄. Under present conditions, measurements indicate maximum cell capacity of about 0.5 whr/lb. Practical values of energy per unit weight of 15-30 whr/lb seem possible with further development. At present the most promising systems are propylene carbonate-potassium thiocyanate or tetraethyl ammonium bromide mixtures with cathodes of Halane or KlCl₄.

CONTENTS

ABSTF	RACT							•	•				•		•		•	•	•	ii
LIST	OF	ILLUSTRATION	s	•		•	•			•			•	•	•	•	•	•		iv
LIST	OF	TABLES					•		٠	•	•		•	•	•	•	•	•	•	v
I	INT	RODUCTION .				•	•													1
II	LII	ERATURE SURV	EY			•	•								•		•	•	•	2
III	EXI	ERIMENTAL WO	RK																	3
		Nonaqueous	Calutia	. 9+	nd i	0 E											_	_		3
	Α.																			3
			ivity Me																	12
			bility v															•	•	15
		3. Purific	ation of	f Pr	opy	ten	e	Jar	DOI	nat	е	• •	•	•	•	•	•	•	•	10
	В.	Anode Prepa	ration																	15
	υ.		Strips																	17
		2. Dip Coa	_																_	17
		•	•	• •											٠	•	•	•	•	19
		3. Electro	deposit	LON	• •	•	•		•	•	•	• •	•	•	•	•	•	•	•	
	C.	Cathode Pre	paration	n.		•	•		•	•	•		•	•	•	•	•	•	•	19
	D.	Membranes o	r Diaph	ragn	ns .	•	•		•	•	•		•	•	•	•	٠	•	•	22
	Ε.	Battery Stu	dies .														<i>!</i>			23
		_	nstruct																	23
		2. Cell Te																		26
			pacity								•			·	·			_		28
		S. Cell Ca	pacity	• •	• •	•	•		•	•	•	•	•	•	•	•	•	•	•	
	F.	Polarizatio	n Studi	es		•	•		•	•	•	•		•	•	•	•	٠	•	28
	G.	KCNS Purifi	cation	and	Ana	alys	sis	•	•	•	•	•	•	•	٠	•	•	•	•	30
IV	DI	CUSSION									•	•			•	•			•	31
v	FU	TURE WORK			•		•				•	•				•	•	•	•	32
REFE	REN	es					•			•	•	•					•	•	•	32
Appe	ndi:		ALS AND				5 F	OR	CA	THO	DDE	E C	AKE	Ξ,	ΚI	C1	4;			_
		AND Cu ₂	S PREPA	RAT:	ION	•				•	•	•		•	•	•	•	•	•	33
Anno	ndi	D CITUMARY	OF RES	m.r:	S O	e ci	et.t	. E3	(PE	RTI	MEN	ITS	_							36

ILLUSTRATIONS

Fig.	1	Conductivity and Cell Testing Equipment
Fig.	2	Cell "A" for Conductivity Measurements
Fig.	3	Relation of Specific Conductivity, Temperature, and Concentration of KCNS in Propylene Carbonate 9
Fig.	4	Variation of Specific Conductivity in Propylene Carbonate-KCNS Solutions with Temperatures and Concentration
Fig.	5	Logarithm of the Specific Conductivity of KCNS in Propylene Carbonate Versus 1/T°K
Fig.	6	Specific Conductivity of Propylene Carbonate-KCNS Solutions with H ₂ O Added
Fig.	7	Distillation Apparatus for Propylene Carbonate 16
Fig.	8	Dry Box
Fig.	9	Diagram of Cell Apparatus
Fig.	10	Bipolar CellType IV
Fig.	11	Cell Testing Equipment
Fig.	12	Cell for Polarization StudiesType III

TABLES

Table	I	Conductivity (K) Measurements of Various Solvents and Electrolytes at Varied Temperatures	6
Table	11	Relation of Specific Conductivity, Temperature and Concentration of KCNS in Propylene Carbonate	8
Table	III	Physical Constants of Nonaqueous Solvents	13
Table	IV	Compatibility of Solvents with Lithium Metal	14
Table	v	Cathode Materials	21
Table	VI	Membrane Materials	22
Table	VII	Current Capacity of Halane Cells	26
Table	VIII	Current Capacity of K1Cl4 Cells	26
Append	lix B		
Pa	rt 1	Summary of Results of Cell Experiments	37
Pa	rt 2	Summary of Results of Cell Experiments Polarization Measurements	46

DEVELOPMENT OF HIGH ENERGY BATTERIES

I INTRODUCTION

The resurgent interest in batteries has been due in part to the need for a highly portable electric power source in missiles and space probes. Electrical power is required for hydraulic motors and servomechanisms in guidance; for electrical equipment in telemetry, data storage, and transmission; and for signal equipment on the ground. Manned rockets will require even more extensive power for environmental control and expanded communication and guidance facilities.

Besides portability, desirable properties of batteries for power sources are the ability to withstand high inertial impulse and to operate in extreme temperatures and in any position. Primary, or one-shot, batteries are of interest because they are capable of high current drainage; they can also be used for emergency power or other temporary uses in more elaborate rockets.

In October 1959 the National Aeronautics and Space Administration authorized Stanford Research Institute to conduct a research program on a high energy nonaqueous battery. Most batteries commonly operate with 0.5-2.0 cell voltage by using moderately active anodes such as zinc, lead, or iron. Batteries utilizing more active anode materials, such as lithium or sodium, would yield higher cell potentials; thus, savings in weight and size could be realized.

Since the use of such metals with reactive solvents or water is precluded because of solvent reaction and gas evolution, the systems must be made of nonreactive materials and selected nonaqueous solvents. The non-aqueous solvent should have high dielectric constant, low viscosity, and workable liquid range--low freezing point and high boiling point. As the solvent molecule should not contain active hydrogen atoms, solvents such

as alcohols (R-OH) or acids (RCOOH) which react rapidly with alkali metals are not suitable.

The reaction metals of interest include sodium, calcium, and lithium.

This research focused on lithium as anode material. The other metals would probably show similar results.

The objective in this research was the development of batteries with higher cell voltage and increased capacity (whr/lb) over that of existing batteries. By utilizing solvents with low melting points the low temperature operation of nonaqueous batteries may be improved.

II LITERATURE SURVEY

Previous work on nonaqueous batteries has been reported by T. P. Dirkse¹ related to the use of alkali or alkaline earth metals in batteries. Such solvents as liquid ammonia, hydrazine, hydrocyanic acid, ethyl alcohol, and hydrofluoric acid were discussed and studies of cell conductivities and electrolyte performance in acetonitrile, pyridine, acetone, and formamide were summarized. With the cell system sodium lithium perchloride-ethanol, silver oxide, a discharge of 80 ma/cm² was obtained with a cell voltage of 1.0 volt; the open circuit voltage was 3.0.

Successful batteries have been made with liquid ammonia solvent, zinc, lead and magnesium anodes, and lead dioxide, sulfur, mercury sulfate, or sulfur cathodes.² Experimental cells with 26 whr/lb capacity have been assembled showing open circuit voltages of 2.39 [for (Mg/KCNS-NH₃)/HgSO₄ cell]. Recent work³ has suggested that a cell consisting of a magnesium anode and an m-dinitrobenzene cathode utilizing a KCNS liquid-ammonia electrolyte should result in a battery with 100 whr/lb capacity. Liquid sulfur dioxide has been used in a nonaqueous battery with sodium anodes, IBr₂, FeCl₃, and iron cathodes; an open circuit voltage of 5 was found.⁴ Acetonitrile has been used as the solvent in a Leclanche dry cell to give 1.5 volts open circuit.⁵

III EXPERIMENTAL WORK

The major part of the present work evaluated cells made of lithium anodes and certain selected cathodes in solutions of propylene carbonate and potassium thiocyanate.

A. NONAQUEOUS SOLUTION STUDIES

1. Conductivity Measurements

Conductivity measurements were carried out with a shielded Wheatstone bridge using a modified General Radio capacitor bridge, Type No. 716-C, circuit.

A power oscillator from Industrial Test Equipment Company, Model 1040, supplied the 1,000 cps alternating current. The bridge balance point was measured visually with a Tektronix, Type 531, oscilloscope. These are shown in Fig. 1.

Conductivity measurements were made using the cell shown in Fig. 2. Caps were placed on top of the columns to prevent moisture and impurities from getting into the cell. The cell, plus 20 ml of solution, was then placed in constant temperature baths. Bath temperatures ranged from -40°C to +50°C. Conductivity measurements at various temperatures were made of saturated solutions of the salts KCl, NaCl, HBr, LiBr, Et₄NBr, and KCNS in various solvents. Propylene carbonate was studied most extensively.

Measurements were also made of saturated solutions of KCNS and Et_4NBr in dimethylsulfoxide, acetonitrile, and mixtures of N-methyl acetamide with propylene carbonate. The results of this work are tabulated in Table I.

The relation of specific conductivity, temperature, and concentration of KCNS in propylene carbonate is given in Table II and Figs. 3, 4, 5, and 6. Figures 3 and 4 illustrate how specific conductivities, K = 3.45, 6.20, 8.0, and $10.0 \times 10^{-3} \ \Omega^{-1} \ \text{cm}^{-1}$, vary with temperature and concentration of KCNS in propylene carbonate. Figure 5 is a plot of the logarithm of the specific conductivity of KCNS in propylene carbonate versus $1/T^{\circ}K$.

CONDUCTIVITY AND CELL TESTING EQUIPMENT

CELL "A" FOR CONDUCTIVITY MEASUREMENT

Table I

CONDUCTIVITY (K) MEASUREMENTS OF VARIOUS
SOLVENTS AND ELECTROLYTES AT VARIED TEMPERATURES

Run Number	Solvent (50 ml)	Electrolyte	$K, \Omega^{-1} cm^{-1}$	т°С
1	Propylene carbonate (distilled)	None	1.8 x 10 ⁻⁵	47
2		KBr saturated	1.8×10^{-4} 3.15×10^{-4}	20 50
3		KBr 10 gm	3.13×10^{-4} 3.09×10^{-4}	45.2 43
4		KCNS 10 gm, not saturated	8.4×10^{-3} 7.09×10^{-3} 7.08×10^{-3} 1.24×10^{-2}	33 26 25.5 50
5		KCNS 11 gm, saturated	6.82×10^{-3} 7.95×10^{-3} 12.58×10^{-3} 10.00×10^{-3}	25.5 31.0 50 40
6	. * * * * * * * * * * * * * * * * * * *	LiBr 25 gm, saturated	4.2 x 10 ⁻⁴ 5.68 x 10 ⁻⁴ 11.45 x 10 ⁻⁴ 15.55 x 10 ⁻⁴	22.2 30 40 50
7		Solution No. 6 diluted 1 to 1 with propylene carbonate	1.355 x 10 ⁻³ 1.483 x 10 ⁻³ 1.853 x 10 ⁻³ 2.572 x 10 ⁻³ 3.50 x 10 ⁻³	22 25 30 40 50
8	·	LiCl 10 gm, saturated	3.07×10^{-4} 3.31×10^{-4} 3.93×10^{-4} 4.79×10^{-4}	25.2 31 40.8 50
9		Et ₄ NBr 10 gm saturated	7.039 x 10 ⁻³ 7.77 x 10 ⁻³ 9.417 x 10 ⁻³ 11.09 x 10 ⁻³	24.2 30 40.3 50
10	Propylene carbonate (as received)	H ₂ O 0% (added) H ₂ O 3.8% H ₂ O 10% H ₂ O 20%	6 x 10 ⁻³ 1.25 x 10 ⁻² 2.20 x 10 ⁻² 3.82 x 10 ⁻²	25 25 25 25 25

Table I (Concluded)

Γ		11020 1 (00110111101)		r
Run Number	Solvent (50 ml)	Electrolyte	K, Ω ⁻¹ cm ⁻¹	т°С
11	Dimethyl sulfoxide	KCNS 10 gm, all dissolved	1.292 x 10 ⁻² 1.396 x 10 ⁻² 1.578 x 10 ⁻² 1.993 x 10 ⁻² 2.458 x 10 ⁻²	22 25 30 40 50
12		Et ₄ NBr 8 gm, saturated	1.035 x 10 ⁻² 1.170 1.431 1.713	24 30 30 50
13		KCNS 11 gm, unsaturated	1.225 x 10 ⁻² 1.309 1.516 1.937 2.492	22.8 25 30 40 50
14	Acetonitrile	Et ₄ NBr 8 gm, saturated	3.40 x 10 ⁻² 3.17 2.94 2.81	50 40 30 25
15		KCNS 10 gm, saturated	2.68 x 10 ⁻² 2.73 2.84 3.07 3.30	23 25 30 40 50
16	111.90 gm propylene carbonate 92.85 gm N methyl acetamide	KCNS 10 gm, unsaturated	6.57 x 10 ⁻³ 7.67 6.39 7.66 10.48 13.30	25 30 25 30 40 50

Table II

		RELAT AND C	ION OF SP ONCENTRAT	RELATION OF SPECIFIC CONDUCTIVITY, TEMPERATURE, AND CONCENTRATION OF KCNS IN PROPYLENE CARBONATE	tivity, ti n propyle	EMPERATUI NE CARBOI	RE, VATE		
Moles KCNS	Cell No.	Constant	K = C/R	0.00	20.0	25.0	30.0	35.0	40.0
1.95	87	120.5	æ ×	42,210 2.86 x 10 ⁻³	20,030 6.02	17,510 6.88	15,310 7.88	13,510 8.92	11,990 10.01
1.76	H	122.3	æ×	40,640 3.01 x	20,100 6.09	17,460	15,320 7.99	13,580 9.03	12,110 10.02
1.55	83	120.5	* ×	28,700 4.20	15,230 7.91	13,470 8.95	11,970 10.08	10,710 11.23	9,642
1.285	- -	122.3	æ×	35,180 3.48	18,870 6.49	16,630 7.36	14,790 8.28	13,250 9.23	11,950 10.23
0.961	03	120.5	æ 🔀	33,120 3.64	18,480* 6.53	16,620 7.25	14,900 8.09	13,460 8.95	12,230 9.85
0.648	-	122.3	K X	35,470 3.45	5.91	18,760 6.53	16,910 7.23	15,390 7.95	14,040 8.71
0.305	-	122.3	жж	45,760 2.68	28, 120 4.35	25,500 4.80	23,220 5.27	21,250 5.78	19,550 6.26
$1/T \times 10^3$				3.66	3.41	3.36	3.30	3.25	3.19

* 20.4°C

FIG. 3

RELATION OF SPECIFIC CONDUCTIVITY TEMPERATURE AND CONCENTRATION
OF KCNS IN PROPYLENE CARBONATE

FIG. 4

VARIATION OF SPECIFIC CONDUCTIVITY
IN PROPYLENE CARBONATE-KCNS WITH
TEMPERATURE AND CONCENTRATION

FIG. 5

LOGARITHM OF THE SPECIFIC CONDUCTIVITY OF KCNS IN PROPYLENE CARBONATE vs 1/T°K

FIG. 6

SPECIFIC CONDUCTIVITY OF PROPYLENE
CARBONATE—POTASSIUM THIOCYANATE
SOLUTIONS WITH H₂O ADDED

Figure 6 illustrates how the specific conductivity of KCNS in as-received propylene carbonate changes with water content at $25\,^{\circ}\text{C}$.

2. Compatibility with Lithium

Nonaqueous solvents were surveyed and those of interest are tabulated with their various bulk properties in Table III. The compatibility of these as-received and purified liquids with lithium has been ascertained. These results are shown in Table IV. Commercial solvents are available which are compatible with lithium metal and which have high conductivity with electrolytes; thus they could be used in battery systems. Neither

Table III

PHYSICAL CONSTANTS OF NONAQUEOUS SOLVENTS

Solvent	ω	v2st (cp)	<u>ε</u> ν (cp)	F. P.	B. P.	B. P. Molecular °C Weight	Source	Grade	Density
Acetaldehyde	21.1	0.21	104	-124	20	44.23	Eastman Organic Chemicals	Commercial	0.783
Acetonitrile	37.5	0.39	96.3	-41	82	41.05	Fisher	0.01% H ₂ O	0.783
Water	78.4	0.897	88	0	100	18		Distilled	0.998
Acetone	20.47 3.040	3.040	6.73	-95	56.5	58.08	Fisher	C.P.	0.792
N Methyl Acetamide	165.5	0.0302	5,517	28	206	73.09	Eastman Organic Chemicals	Commercial	0.942
Ethylene Carbonate	89.12 2.547	2.547	34.94	36.4	248	88.03	Matheson, Coleman and Bell	Coleman Commercial	1.338
Nitroethane	28.06 0.66	99.0	42.51	06-	114.8	75.07	Eastman Organic Chemicals	Commercial	1.052
Dimethyl Formamide	36.71 0.802	0.802	45.89	-61	153	73.097	Fisher	Certified Reagent	0.944
γ Butyrolactone	39.1	1.75	22.34	-43.5	204	86.09	Eastman Organic Chemicals	Commercial	1.125
Dimethyl Sulfoxide	45	1,98	22.72	18.45	189	78	Crown Zellerbach	Commercial	1.100
Propylene Carbonate	64.4	2.53	25.45	-49.2	241.7	102.04	Matheson, Coleman and Bell	Coleman High Purity	1.198

Table IV

COMPATIBILITY OF SOLVENTS WITH LITHIUM METAL

Condition of Metal faite on bottom Gray coating Yellow-white White on bottom Gray. No shiny area left on surface All reacted Yellow-white precipitate on top--orange layer on bottom In suspension All reacted white on bottom white and black coat on auriace Whate on top Thite on bottom white on bottom Yellow-white Precipitate EXPOSURE TIME -- 3 WEEKS Orange Light yellos Color of Liquid Red-brown Yellow Clear Orange Black Clear Clear Slow reaction Slow reaction Siow reaction All reacted Gas į 1: Partially S covered with white cost Condition of Metal Black film 8 White around lithium Flocculent buff around metal All reacted All reacted All reacted White on bottom All reacted White Large white White on bottom Precipitate ame as at 4 hours exposure Buff colored EXPOSURE TIME -- 24 HOURS Or ange White į Color of Liquid Bright yellow Light yellow Clear Yellow Black Clear Clear Yellow Clear Orange Still reacting Still reacting White coating Still reacting ogo Paint MHg ł ł i : ::: 90 White coating White coating Condition of Metal Dull in 2 hr White on bottom | All reacted Placed in hood and solvent removed in 2 min Bright Conted Bright Bright Bright Dull ; Siight in bottom Slight in bottom Yellow near lithlum Color of Liquid Precipitate 311ght Slight White White White White White EXPOSURE TIME -- 4HOURS Clear for 5 min Yellow in 4 hr Slight yellow Pale yellow Very yellow Dark brown Clear Yellow Clear Clear Clear Cloudy Clear Violent gassing with heating Slow reaction Slow reaction Slow reaction Slow reaction Propylene Carbonats Slow reaction Slow reaction Gassing Gassing Gassing 8 1 1 Dimethyl Formanide Ethyl Cyanoscetate Dimethyl Sulfoxide Propargyl Alcohol y Butyrolactone Ethyl Sulfate SOLVENT 2 Furaldebyde Acetobitrile Mitrosthane Isopropanol Formanide Butanol

acids nor ammonium ions were acceptable with lithium, since rapid corrosion occurs. Therefore, salts such as KCNS and Et₄NBr must be used as electrolytes.

Propylene carbonate used in this study originated from Matheson, Coleman, and Bell. (Its properties and general characteristics are listed in Table III.) Raw or as-received propylene carbonate contains 2.6% water when analyzed by the Karl Fisher titration.

3. Purification of Propylene Carbonate

In order to purify the propylene carbonate a fractional distillation apparatus, shown in Fig. 7, was used. Cuts of 30 ml each were taken; the first two cuts were discarded. Conductivity measurements were made at 25°C on succeeding cuts using a 1,000 cycle AC bridge. The original propylene carbonate (as received) had a specific conductivity, $K = 1.1 \times 10^{-5} \ \Omega^{-1} \ \text{cm}^{-1}, \text{ and the third cut of distillate had a}$ $K = 3 \times 10^{-7} \ \Omega^{-1} \ \text{cm}^{-1}. \quad \text{The fifth cut had a } K = 2 \times 10^{-7} \ \Omega^{-1} \ \text{cm}^{-1}. \quad \text{Ex-tractions of } K = 6 \times 10^{-5} \ \text{to } 8 \times 10^{-5} \ \Omega^{-1} \ \text{cm}^{-1} \ \text{were used in cell runs.}$

A one-liter flask was adapted with a Nichrome heater in the bottom to heat the propylene carbonate. A reflux column 1-1/8 inch ID, 40 inches long was filled with Pyrex glass helices 3/16 inch ID (Scientific Glass Apparatus Company). The tube was wrapped with heating tape (manufactured by Electrothermal Engineering Company, Limited, and sold in the United States by Arthur S. LaPine and Company in Chicago, Illinois). This was done to heat the column sufficiently to permit the vapors to reach the condenser and collect in a calibrated flask. The system was then closed off and 20-30 ml of purified propylene carbonate was delivered into the collection flask, removed, and replaced with a new flask placed in line. An outer tube 2-3/4 inches ID was placed over the wrapped reflux tube to maintain the inside temperature.

The liquid and reflux column were kept at 126° and 110°C respectively. The entire system was maintained at 10 mm Hg.

B. ANODE PREPARATION

Lithium was selected as the anode material. Lithium has a low equivalent weight (6.9 equivalents/mole) and would be an ideal electrode

FIG. 7
DISTILLATION APPARATUS FOR PROPYLENE CARBONATE

material from the standpoint of lightness in weight and high voltage, based on its half reaction to produce lithium ion.

$$Li \rightarrow Li^{\dagger}_{(Aq)} + e \qquad E^{\circ} = 3.05 \text{ volts}$$

The potential for the half reaction in solvents other than water (such as propylene carbonate) is expected to be in the same range, 2.8 to 3.2 volts. This voltage range is found for methanol, acetonitrile, formic acid, and ammonia.⁶

For a reaction in water between lithium and chlorine to produce solid LiCl

$$1/2 \text{ Cl}_2 + \text{Li} \rightarrow \text{LiCl}_{(c)}$$

the standard free energy change is -91.7 Kcal/mole, which is equivalent to a potential of 4.2 volts. Three methods of anode preparation were selected; use of lithium strips, lithium dip coatings, and electrodeposition of lithium.

1. Lithium Strips

Lithium in 30-mil-thick strips is soft and must be supported when used as an electrode. The first method used to form an electrode was to attach 1/4-inch-wide x 30-mil-thick lithium ribbon to copper plates. The lithium, stored in petroleum grease, was cleaned according to the following procedure:

- (a) Degrease in acetone, wipe with paper tissue
- (b) Soak in a methanol-dry ice mixture until the gray oxide-nitride coating is dissolved
- (c) Remove from mixture, dry with paper tissue, and place in a cell prefilled with electrolyte solution.

This method gave poor mechanical attachment of lithium to copper, and showed difficulty of maintaining good electrical contact.

2. Dip Coating

A copper sheet (cut to size) was dipped into molten lithium under argon in a dry box. The lithium electrode was then assembled in the

battery cell in the dry box (Fig. 8). Covers were applied to the cell, which was then removed from the dry box for filling with electrolyte solution and testing. Lithium-coated copper anodes dipped into propylene carbonate solutions were found clean and shiny for a sufficient time to effect an air transfer to cell. Cells have also been assembled at test equipment location.

FIG. 8 DRY BOX

Some copper was dissolved by the molten lithium. In one typical run with a lithium coating of 0.31 gram spread over a 22 cm² surface, 0.11 gram copper was dissolved in the lithium coating and 0.29 gram of copper was left in the molten bath. After the copper had been dipped

into the molten lithium bath a gray to black colored film was formed on the surface of the bath which was skimmed off. Occasionally a voluminous black efflorescence occurred at the surface in the stainless steel pot and the black material overflowed the pot, necessitating the replacement of the lithium.

Because the copper was soluble in molten lithium, different materials were also used. For example, molybdenum sheet was cut to desired size and then dip-coated with lithium, making an electrode which was not soluble in the molten lithium.

3. Electrodeposition

Electrodeposition of lithium onto copper plates for use as anodes was carried out in propylene carbonate solutions of lithium salts. Solutions with lithium chloride and lithium bromide produced gray crystalline deposits on the copper plates. Preliminary experiments gave current efficiencies of 20% to 40%. Electrodeposition of lithium on a metallic backing was a possible method for cell assembly; however, in the majority of the work reported, dip-coated electrodes were used since considerably more development was necessary for electrodeposition.

C. CATHODE PREPARATION

Proper selection of the cathode material was of major importance in this work. Many materials having a good charge-to-weight ratio were not compatible with solvents. For example, if chlorine gas were used the half reaction would be

$$1/2 Cl_2 \rightarrow Cl(Aq)^{-e}$$
 $E^{\circ} = +1.36 \text{ volts}$.

Chlorine, however, decomposes solvents such as propylene carbonate.

For a more suitable cathode material such as Halane (NN dichloro-dimethyl-hydantoin) the potential would be less. In propylene carbonate solutions, Halane liberated bromine and iodine from bromide and iodide salts. Chlorine from chloride ion was not observed under these conditions.

$$(\text{Halane}) \rightarrow (\text{Halane})^{=} = -2e$$
 E $\sim 1.0 \text{ volt}$

$$RNC1 \rightarrow RN^- + C1^- - 2e$$
.

Halane was used as a cathode material in most cell experiments. Potassium thiocyanate, since it was soluble in solvents and compatible with lithium anodes, was the electrolyte used in most cell experiments. However, Halane reacts with the thiocyanate ion to form colorless thiocyanogen. Thiocyanogen subsequently polymerizes to form a yellow-orange, unreactive compound parathiocyanogen. Alternatively, the thiocyanogen could react at the cathode.

$$1/2 \text{ (CNS)}_2 \rightarrow \text{CNS}^- - \text{e}$$
 $E^{\circ} = +0.77 \text{ volts}$

Formation of thiocyanogen and parathiocyanogen by removal of thiocyanate may account for the increase in resistance which occurred in many of the cell experiments. Initially the cathode was made of copper strips or wire screen covered by dipping into a molten graphite-Halane mixture. Halane can be melted without decomposition.

In later experiments the cathode was constructed using porous carbon plates permeated with the graphite-Halane mixture. Other cathode materials include copper oxide-graphite mixture, cuprous sulfide, Dibromantin-graphite, MnO₂, and CuO. Soluble copper salts such as CuF₂ and CuCl₂ have been mixed with graphite and placed on graphite plates in a paste form. Sulfur-graphite, potassium cyanide, silver peroxide, and silver metal on silver mesh cathode have also been tried. Potassium tetrachloroiodide (KlCl₄) was prepared in the laboratory for use as a cathode. It is possible that this compound may form inter-Halogen-like compounds with the thiocyanates or thiocyanogen in the cell. Compound preparation of KlCl₄ and Cu₂S are given in Appendix A. Table V contains the molecular weights, the number of electrons accepted during reaction, and the theoretical watt hours/lb calculated from a lithium cell using a given cathode material. Methods of cathode preparation are summarized in Appendix A.

Table V

CATHODE MATERIALS

Theoretical Cell Capacity Lithlum-Cathode Material (watt hr/lb)	872	527	915	586	2,760	ade 1,220	300	392	290
Vendor	Jefferson Chemical Company	Arapahoe Chemical, Incorporated	J. T. Baker AR	J. T. Baker AR		Braun-Knecht-Heimann Company, N.F. grade	City Chemical Company, New York	Laboratory preparationAppendix	Laboratory preparationAppendix
Electron Change	4	か	87	73	4	81	83	က	83
Molecular Electron Weight Change	197	296	42	135	32	32	232	307	159
Material	Halane	Dibromantin	CnO	CuC12	02	Ø	Ag ₂ O ₂	KIC14	Cu ₂ S

D. MEMBRANES OR DIAPHRAGMS

Initially diaphragms were made of three to six layers of Whatman No. 1 filter paper. Although this material had low electrical resistance in solution, the separation of the anode and cathode members was not satisfactory and final work was conducted using other membrane materials. Pyroxylin membranes are solubilized by propylene carbonate. Polyvinyl alcohol films and an ion exchange membrane Nalfilm No. 1 are slowly attacked by propylene carbonate and tear while swelling. Cellophane films are swollen slightly by propylene carbonate and give too high a cell resistance for use. An ion exchange membrane with resin reinforced by Fiberglas mesh Nepton CR61, obtained from Ionics Incorporated, is usable for runs of short duration. Solvent resistance of membrane materials are presented in Table VI. A microporous polyvinyl chloride, "Pormax," manufactured by the Electric Storage Battery Company was used in the last experiments and was found to have good properties.

Table VI
MEMBRANE MATERIALS

Material	Solvent	Results	Time Immersed
Polyvinyl Alcohol	Acetonitrile	No attack	20 days
	Acetone (Tech)	No attack	20 days
	Propylene carbonate	No attack	20 days
	γ Butyrolactone	Slow attack	20 days
	DiMethyl sulfoxide	Completely dissolved	2 hours
	DiMethyl Formamide	Very slow attack	20 days
	Nitroethane	Very slow attack	20 days
Cellophane	(No attack in above	ve solvents after 30 (days.)
Nalfilm D-30	Propylene carbonate	Dissolves readily	
Ionics Exchange Resin Nepton CR61	Propylene carbonate KCNS	No attack	30 days
Pyroxylin	Propylene carbonate	Dissolves readily	2 days
Ion Exchange Membrane Nalfilm I	Propylene carbonate	Tears while swelling	2 hours
Pormax Micro Porous- Polyvinyl Chloride	Propylene carbonate	No attack	20 days

E. BATTERY STUDIES

1. Cell Construction

Cells were constructed from 1/4-inch-thick polyethylene with inner dimensions of $1/2 \times 1-3/8 \times 4-3/8$ inches. Cells were used with both 1/2-inch-wide electrodes and 2, 4, 5, and 9-mm spacings between electrodes, and with 1-3/8-inch-wide electrodes and 0.5- to 3-mm spacings. These were cell types I and II respectively, and are shown in Fig. 9.

Lucite was dissolved by propylene carbonate and thus was ruled out as a structural material. Polyethylene is inert to propylene carbonate and was, therefore, used in the cell design. The anode of the cells was made of lithium strips backed with aluminum or copper for support. For later experiments it was decided to use a more inert or insoluble material for support. When lithium strips were used, bakelite (1/32 inch thick) was employed for support. When used in cast form, copper or molybdenum sheet was used as the supporting member.

Multiple or bipolar (Type IV) cells have been constructed for insertion into the standard polyethylene cases, described as follows:

- (a) Two copper sheets coated with Acheson Colloids "Aldag No. 154" on one side only--two coats, with a 30-minute bake at 100°C between coats and after second coat
- (b) One copper sheet coated on both surfaces with "Aldag No. 154"--two coats with a 30-minute bake at 100°C between coats and after second coat
- (c) The two copper sheets with one side coated, dipped into molten lithium
- (d) "U"-shaped polyethylene spacers 1/4 inch thick were cemented with rubber cement, Li surface and dag surface. A compressed Halane, KBr, graphite cathode was placed in compartment between two electrodes in each compartment.
- (e) Two sheets (cut to size) of filter paper placed between cathode and lithium surface
- (f) The assembly is placed in outer cell and electrolyte placed in the two compartments. A drawing of the multiple cell is given in Fig. 10.

DIAGRAM OF CELL APPARATUS

FIG. 9

BIPOLAR CELL—TYPE $\scriptstyle ext{IV}$ (Placed in Standard Battery Case)

2. Cell Testing

Cells were assembled and filled with electrolyte just prior to testing. Cell types I and II required 30-35 ml of electrolyte; Cell III, 25-30 ml; and Cell IV, 6-8 ml. Measurements were made of the open circuit voltage, maximum current, and current capacities under different loads. The equipment used in these tests is illustrated in Figs. 1 and 11. The results of this work are presented in Tables VII, VIII and in Appendix B. The resistance of the cells was measured using an Industrial Equipment Company power oscillator, Model 1040, (a) to supply the 1,000 cps alternating current and a shielded Wheatstone bridge circuit (b) in conjunction with a decade resistance box (c).

Table VII

CURRENT CAPACITY OF HALANE CELLS

Cell Run (Number)	Cathode (Halane)	Capacity (ma min)	Current (ma)	Membrane	Voltage	ocv	Cell Resistance (ohms)
80	2 gms	270	10	Ion Exchange	3.05	3.60	16 At finish
79	2 gms	50	50	Ion Exchange	1.20	3.40	
78	2 gms	26 0	10	Filter Paper	3.30	3.50	
77	2 gms	50	50	Filter Paper	2.02	3.6 0	

Table VIII

CURRENT CAPACITY OF KIC1₄ CELLS

Cell Run (Number)		Capacity (ma min)	Current (ma)	Membrane	Voltage	ocv	Cell Resistance (ohms)
82	2 gms	1050	10	Filter Paper	3.40	3.55	5.82 Initial
86	2 gms	1250	50	Filter Paper	3.05	3.45	7.42 Initial 21.5 At finish
81	2 gms	1100	100	Filter Paper	2.70	3. 6 2	

CELL TESTING EQUIPMENT

The bridge balance point was measured visually with a Tektronix, Type 531, oscilloscope (d).

3. Cell Capacity

The capacity of Halane-containing cells was determined in runs with 2 gram Halane present in the total mixture. For a 10% voltage drop, a capacity of 270 ma-min* was found to be independent of the cell construction, as far as the use of an ion exchange membrane or filter paper for diaphragm was concerned. The cell voltages depended on the cell construction; the higher voltages were obtained at smaller resistances, e.g., 3.30v at 10 ma rate for the lower resistance cells with filter paper. Halane utilization was 0.4% for the 10% voltage drop. These results are recorded in Table VII.

The capacity of KlCl₄-containing cells was determined in runs with 2.0 grams KlCl₄ present in the total mixture. For a 10% voltage drop, a capacity of 1,050 ma-min was found at 10 ma current, and 1,250 ma-min at 50 ma current. These results are recorded in Table VIII.

F. POLARIZATION STUDIES

Polarization values of both electrodes were evaluated using a cell assembly designed to this end shown in Fig. 12.

Platinum reference electrodes were immersed in the electrolyte contained by pockets in the cell walls. The potential measurements made between the platinum reference electrodes and the main electrodes were a function of the activation and concentration polarization and of resistance polarization from the voltage gradient in solution. Data are given in Appendix B. Cells run with Halane-graphite cathodes, lithium anodes, and propylene carbonate-potassium thiocyanate solution indicate that a large part of the polarization is from resistance of the solution at currents to 100 ma or current densities to $(5 \text{ ma})/\text{cm}^2$. The resistance of the cell is high because of the nature of the solvent-electrolyte used.

^{*} Milliampere-minutes.

FIG. 12
CELL FOR POLARIZATION STUDIES—TYPE III

The resistivity of the standard potassium thiocyanate-propylene carbonate solution used is 146 ohm-cm. The total resistance of the parallel plate cells closely approximates that calculated by the equation $R = \rho L/A$ where L is the distance between plates and A the area exposed. Calculation of concentration polarization E_e for the cathode by the usual equations

$$\Delta E_C = \frac{nF}{RT} \ln \frac{1-i}{iL}$$
 and $i_L = \frac{nFDC_0}{\delta}$

shows that E_C is of minor contribution at currents less than 100 ms. For values of $C_0 = 6 \times 10^{-4}$ mole/cc, N = 2 equivalents per mole, $D = 10^{-5}$ cm²/sec, $\delta = 0.005$ cm, T = 298°K, and i = 100 ms. ΔE_C is 3 mv.

Polarization experiments also indicated that the potential of a platinum reference electrode versus the lithium anode remained practically unchanged, while the terminal anode-cathode voltage dropped to zero. This indicated that a serious limitation of the cell is in the Halane cathode. It is believed that the difficulties with the Halane electrode are caused by the formation of a gaseous (chlorine) or solid (parathiocyanogen) resistive layer which interferes with the contact between the carbon grains and the active material.

Preliminary experiments to determine the site of the high "internal resistance" were not successful, due to inconsistent and rapidly changing results. Resistance-capacitance measurements were also erratic because of chemical changes in cells. These were carried out by potential-time measurements using a reference electrode on both sides of the separator and an oscilloscope with 10⁻⁶ second cut-off times.

G. KCNS PURIFICATION AND ANALYSIS

One hundred twenty grams of commercial KCNS were placed in a clean container and heated at 70°C in an evacuated oven (1 mm pressure) until dry. After about four hours the salt was removed, ground in a mortar and pestle, and reheated in the vacuum oven for twenty-four hours. The salt was then removed and placed in a vacuum desiccator until ready to be placed in solution for cell measurements.

Solutions KCNS in propylene carbonate were analyzed by titrating with a standard silver nitrate solution.

IV DISCUSSION

Lithium anodes of sufficiently low polarizability and compatibility are possible in nonaqueous electrolytes. The most promising systems are propylene carbonate - KCNS, or Et₄NBr as electrolytes with cathodes of Halane or KICl₄.

Total cell voltages of 3.9 have been obtained, which surpass those of most other battery systems.

A major part of this work was concerned with determining the conductivity of nonaqueous electrolytes which were inert to lithium. A suitable system was propylene carbonate with near-saturated solutions of KCNS or Et₄NBr. Specific conductivities of the order of $K = 7 \times 10^{-3} \ \Omega^{-1} \ cm^{-1} \ at \ 25^{\circ}\text{C} \ were obtained. This is about one hundred times more resistant than sulfuric battery acid <math>(0.7 \ \Omega^{-1} \ cm^{-1})$. This shows that one of the limiting factors of the lithium battery capacity was the high resistance of the electrolyte.

Current densities of 20-25 ma/cm² were obtained with cell experiments using lithium anodes, Halane cathode, and propylene carbonate-KCNS-H₂O mixtures. Typical runs are shown in Appendix B, experiments 35-37. Similar current densities were obtained with lithium anodes, KICl₄ cathodes, and a propylene carbonate-KCNS electrolyte, as shown by experiments 71, 73, and 75. The power-to-weight ratio was approximately doubled by the use of bipolar cells in which double cell construction gave similar current densities but at higher voltages. These experiments (102 and 103) indicated that another major limitation of the present battery system is in the high polarizability under current drains. Future work would definitely have to concentrate on this side of the cell system.

A membrane of suitably low resistance and good compatibility with the system is also lacking, although "Pormax" showed good results.

V FUTURE WORK

Future studies should concentrate on improvement of the cathode reaction. Any further development of this battery will depend primarily on what improvements can be made in the proper selection of cathode material to give lower polarizability and higher charge-to-weight ratio. This means work must focus on examination of different cathode materials, organic and inorganic. Further systems which are suggested for consideration as cathode materials are Li₂O₂, percarbonates, perborates, perfluorates, persulfates, perphosphates, potassium chlorate, iodoform, CI₄, T-chloramine, N-chloramine, and organic acids.

The question of the location of the main part of the resistance indicated by the D.C. potential measurements should be studied by A.C. impedance measurements with frequencies up to 40 kc/sec.

Attempts to improve the electrolyte conductivity should be made to form solvent-additive complexes. These may be found in components such as AlCl₃ and fluorides.

REFERENCES

- Dirkse, T. P. An Investigation of the Possibility of Using the Alkali or Alkaline Earth Metals as the Active Materials in a Battery, Naval Research Laboratories Report P-2503, March 1, 1945 (PB 63793).
- 2. Gleason, H. S. and Minnick, L. J. Proceedings 11th Annual Battery Research and Development Conference, U.S. Army Signal Corps, Fort Monmouth, New Jersey, p. 19 (1957).
- 3. Harris, W. S. Investigation of Chemoelectric Conversion in the Ammonia System, U.S. Naval Ordnance Laboratory, Tech Memo. 44-5, September 1960.
- 4. Schaschl, E. and McDonald, H. J. Transactions Electrochemical Society, 94, 299 (1948).
- 5. Arcand, G. M. Proceedings 11th Annual Battery Research and Development Conference, U.S. Army Signal Corps, Fort Monmouth, New Jersey, p. 18 (1957).
- 6. Strehlow, H. J. Elektrochemie, 56, 827 (1952).

APPENDIX A

MATERIALS AND PROCEDURES FOR CATHODE "CAKE," KICl4, AND $\mathrm{Cu_2S}$ PREPARATION

Appendix A

MATERIALS AND PROCEDURES FOR CATHODE "CAKE," KIC14, AND Cu2S PREPARATION

Cathode Cakes

- No. 1
- 2 gm Halane
- 0.8 gm powdered graphite
- 0.2 gm Flexbond resin (polyvinyl alcohol)

Materials were wet with small amount of acetone, spread between polyethylene form, air dried 30 minutes, and placed in 90°C oven for 1 hour. Product showed swelling and, although strong, had a very irregular surface.

- No. 2
- 4 gm Halane
- 1.6 gm powdered graphite
- 0.2 gm Flexbond resin (PVA)

Materials were mixed together, placed in 1-inch circular die, and pressed at a pressure of 6,000 pounds. A strong compact cake, $5/16 \times 1$ inch was formed.

- No. 3
- 24 gm Halane
- 9.6 gm powdered graphite

Material was mixed and placed in a rectangular die. Mix and die were placed in Baldwin machine which applied a total pressure of 72,000 pounds. A smooth, compact cake 3.5 mm thick by 15 cm x 5 cm was formed.

- No. 4a
- 16 gm Halane
- 8 gm KBr
- 8.0 gm graphite

Materials were mixed and pressed in die at 85,000 pounds pressure. A very poor cake which broke very easily was formed.

- No. 4b
- 16 gm Halane
- 8 gm KBr (ground to a fine powder)
- 9.6 gm graphite

Materials were mixed together with 10 drops raw propylene carbonate. They were ground, placed in die, and pressed at 75,000 pounds. This cake held together well and was usable as a cathode in cell.

Appendix A (Concluded)

Cathode Cakes

No. 5

16 gm graphite

16 gm CuO

0.8 gm Flexbond resin (PVA)

10 ml acetone (to dissolve resin)

Components were ground together using a mortar and pestle. After grinding, material was placed in a die, spread evenly, air dried 18 hours, and pressed at 80,000 pounds pressure. A fairly good cake resulted.

KIC14

KC1

7.5 gm

 I_2

12.7 gm

Cl₂

7.1 gm

KCl was mixed with a little water to which I_2 was added and heated to $50^{\circ}-60^{\circ}$ C in a water bath. Cl_2 bubbled in slowly as orange crystals formed. Crystals of KICl₄ were dried with suction and stored in a desiccator.

Cu_2S

Cu wire

6.4 gm

S

4.0 gm

Cu and S were heated in a partially closed crucible until excess S burned off. Cu_2S was then crushed and powdered.

APPENDIX B - PARTS 1 AND 2
SUMMARY OF RESULTS OF CELL EXPERIMENTS

APPENDIX B - PART 1

SUMMARY OF RESULTS OF CELL EXPERIMENTS

		face.	*	yellow.			on dia except Polyvinyl	liquid osting or.		oying of	pood u	₽	-800	-800	~ b	range range film -	
	Remarks	Cathode has orange costing on surface. Anode - clean and shiny.	Anode and cathode have light yellow coating - some attack on cathode.	Anodes clean. Solution slightly yellow Very strong sulfur odor.	As No. 3.	Anodes clean. Red-brown liquid in cathode side.	Solution pellow-orange costing on phragm and cathode. Anodes OK - evenite film above liquid level. Posicobol dissolves to a gummy mass.	Anodes - white froiby material at liquid lawel. Cathode - yellow to red coating on surface. Solution pink in color.	Similar to Mo. 7.	Dark red solution. Li good - alloying of Li to Al at contact points. Anode po- sition 2.	Solution a atraw color. Anodes in good condition. Anode position 3.	Clips in liquid. Li anode in good condition.	Solution yallow. Anodes in good cos- dition. Anode position 3.	Solution yellow. Anodes in good com- dition.	Solution yellow. H ₂ O added (5 ml) increased current to 40 ma - heavy gassing.	Black film on copper backing plate. Solution yellow. Papers yellow-orange in color. Copper beneath black film - bright and shiny.	Solution yellow. Anodes - good. Paper - orange color.
	Cell Type	4						H	-	-	H	=	-	=	=	=	=
	Membrane	Cellophane					Polyvinyl alcohol	Cellophane- soaked in methanol for two weeks	Ce 1 lophane	Filter paper*	Filter paper*	3 sheets filter paper				3 sheets filter paper*	3 sheets filter paper
	Closed	1	:	;	ı	;	1	1	1	!	1.	1	1	1	1	1	:
Cell	Resistance n	700	540	148	96 97	3	1	9570	>100	34.	4 00	20	1450	30 42 in 36 min.	1	13	
	CD (amp/cm²)	1.33 x 10 ⁻⁴	2.89 x 10 ⁻⁴	10.5 × 10 ⁻⁴	1.57 x 10 ⁻⁴	26.3 x 10 ⁻⁴	4.1 x 10 ⁻⁸	4.2 x 10 ⁻⁴	3.7 x 10"8	2.42 × 10-4	3.3 × 10-8	3.18 x 10"4	1.10 x 10 ⁻⁴	8.33 x 10 ⁻⁴	10.8 × 10"4	16.66 x 10"4	1.72 × 10 ⁻⁴
	Max. I (ma)	2.5	9.6	90.0	0.0	20.0	9.78	0.	0.70	*	8.0	10.0	1.	12.5	17.0	40.0	£.
	200	3.0	2.35	3.40	2.70	3.50	00.♣	3.42	3.30	3.45	2.40	2.40	3.1	2.1	<u>-</u>	6 :-	2.30
	Area Car ²)	19.0	19.0	0.61	19.0	19.0	19.0	19.0	19.0	19.0	24.0	31.50	19.00	15.0	15.70	24.0	58 .0
	Solvent	Propylene carbonate	Acetonitrile	Dimethyl	Dimethyl	7 Butyrolactone	Propylene carbonate	y Butyrolactone	Propylene carbonate								
	Electrolyte	KCNS 10 gm 50 ml solvent	MCNS saturated				KCKS 10 gm (50 ml solvent)	MCNS	KCNS 10 gm			KCNS 9,81 gm 50 ml solvent	KCNS 10 gm 50 ml solvent	KCNS 9.4 gm 50 ml solvent	KCNS 9.85 gm 50 ml solvent	KCNS 9.48 gm 50 ml solvent	KCNS 9.48 gm 50 ml solvent
	Cathode	Graphite-Halane (cast bar) 20 gm-Halane,					30 gw-Halane, 10 gw-graphite	20 gm-Halane, 10 gm-graphite	30 gm-Halane, 10 gm-graphite		<u> </u>	Brass screen dipped into molten Halane- graphite	Graphite Halane cast bar	Graphite Halane cast bar	Cu sheet graphite Halane coated on brass		Al plate brass screen
	Anode	Aluminum backing plates					Brass screen Li rolled on	Aluminum backing plates	Brass screen					Cu sheet brass screen Li rolled on	Cu sheet brass screen Li rolled on		Al plate perforated with 5/32 in. holes. Li pressed into perforations
	Cell Run No		~	n	*	•	ψ.	-	•	0	9	7	21	ឌ	7	115	2

	Remarks	Solution yellow-orange. Anode - good.	Solution dark yellow. Anodes - good. Black film on surface of gold - easily removed.	Anode - good. Absorption of solution by carbon so that only 10 ml (of 30) remained at end of run.	Graphite back plate for Li was chewed away beneath Li. Anode good.	Solution dear with an orange precipitate. Sheet of paper at Kalane end orange. Sheet of paper at Li end white. Anode gray.	Copper wire probe has a black easily remarked film on it. Solution yellow.	Cell lesked.	Solution yellow. Gold plated wire - bright.		or. Papers yerror.	Anodes good. Solution pale yailor. All papers white.
Cell	Type	11	=	=	=	=	H	=	=	Ħ	=	#
	Membrane	Ce l lophane	Cellophane	3 sheets filter paper*	3 sheets filter paper*	6 sheets filter paper*	6 sheets filter paper*	6 sheets filter paper*			G sheets filter paper*	
LI nge 0	Closed	1	1	;	1	1	1	1	l	!	1	1
Cell Registance O	Open	!	;	Approx.	Approx.	000	•	01	1	!	O s	530 initial 550 in 11.6 min.
€	(amp/cm ²)	1.18 x 10 ⁻⁴	4.13 x 10 ⁻⁴		× 10-4	67.4 × 10 ⁻⁴	64.4 × 10 ⁻⁴	63.4 × 10 ⁻⁴	2.7 × 10-4	49.1 × 10"4	30.7 × 10-4	3.14 × 10 ⁻⁴
3	I (ma)	3.1	11.0	67.0	200	110	105	130	0.0	110	4	•
	20	3.10	2.20	3.20	3.23	6) 4. 64	8. 8.	ස ස	60	3.46	3.62	4.0
=	Area (Cm ²)	26.25	28.40	16.28	0.	18 . 25	16.25	20.48	18.0	4.	.00 .00 .00	19.50
	Solvent	Propylene carbonate								-	(Saturated milky)	Propylene carbonate
	Electrolyte	KCNS 9.48 gm 30 ml solvent	KCNS 9.20 gm	KCNS 9.20 gm	KCNS 9.20 gs	KCNS 9.20 gm 50 ml solvent	KCNS 9.82 gm 50 ml solvent	KCNS 9.82 Km 50 ml solvent	KCNS -10 gm 50 ml solvent	KCNS 10 gm (50 ml solvent)	Li Br 5 gm 50 ml solvent	(50 ml solvent)
	Materials	Al plate brass brass screen	As above except Cu and Brass parts gold plated	Graphite bar coated with graphite-Halane	C-60 porous carbon graphite 5 Halane 30 poured over	C-60 porous carbon graphite 5 Halane 30 poured over	C-60 porous carbon graphite 5 Halane 30 poured over surface	C-60 porous carbon. graphite 5 gm Halane 30 gm poured over surface		C-60 porous carbon graphite 5 gm Halane 30 gm poured over surface	C-60 carbon- graphite-Halane coated	C-60 carbon- graphite-Halane coated
	Anode	Al plate perforated with 5/32 in. holes. Li pressed into perforations	As above except Cu and Brass parts gold plate	Graphite bar - Li	Graphite bar - Li	Al back plate Li pressed into perfor rations	Al back plate copper probe between 3rd and 4th paper	As No. 22 ex- cept probe is between 1st and 2nd paper at Li end	As No. 23 except Cu wire gold plated	As No. 23	Al backing plate Li. Au plated Cu wire. Probe between lst and 2nd papers at	As No. 26
Cell	Run No.	11	9	61	50	12	25	23	%	82	56	2
•												

APPENDIX B - PART 1 (Continued)

	Remarks	Solution clear. Paper white. Anode good.	Solution yellow. Foamy. Papers white,		This cell prepared in laboratory. Littured gray by the time the cell was assembled. Not much Halane on graphite.	Liquid brown in color - carbon in suspension. All papers yellow.	Solution dark green. All papers green in color. Heavy attack of Halane-graphite.	Solution clear. Papers white at finish of run.	Solution dirty yellow-green color. Papers yellow at Li end. Red-brown at Halane.	Paper yellow at Li end. Orange at Halane and.	Solution dark mustard color. Papers yellow. Very beavy yellow coating on carbon.	Solution slightly yellow. Papers slightly yellow at Halane end. White at Li end.	I gm Halane placed in carbon compartment. Solution red-brown. Diaphragm dissolved.	Solution yellow. Papers orange-red at Halane, decreasing to alight yellow at Li end.	Solution light yellow. Papers yellow at Halane end. White at Li end.	Cell leaked. Cell cut in haif and ce- mented together with rubber cement. Cellophane separated between haives.
-	Cell Type	E .	# H	=	11		e 0	<i></i>	₩ =	=======================================	H		w	w = 4		H
	Kembrane				6 sheets Kraft paper	6 sheets filter paper*					6 sheets filter paper*	6 sheets filter paper*	Pyroxylin film	6 sheets filter paper*	6 sheets filter paper*	Cellophane (DuPont)
	ce A	:	1	:	;	;	:	;	1	1	1	:	;	:	:	;
11-2	Resistance A	16	13	340	>15	ŀ	23,600	92,000	ł	1	Approx.	Approx.	;	1	1	:
		* 10 ⁻⁴	x 10-4	# 10-4	x 10-4	* 10 ⁻ *	x 10.4	× 10"4	x 10"4	* 10 ⁻⁴	* 10 *	x 10-4	x 10-4	* 10"*	x 10-4	x 10_\$
	CD (amp/cm ²)	os Os	34.4	÷.	4.1	7.	6.67	8. 8.	102.5	109.5	137.8	97.8	15.2	2	133.3	1.3
	Max. I (ma)	100	3	#? #	\$	170	13.0	1 0	500 dropped to 200	230 dropped to 160 in 5 min	380 to 310 in few sec. 115 in 2 min.	110 dropped to 31 in 47 min	11	120	200 dropped to 60 in 23 min	0.30
	OCV	4.6	8.	3.85	4	3.30	3.55	3.70	3,2	8. 8.	2.90	3.20	0.1	3.50	3.20	3.40
	Li Area (cm ⁸)	20.0	18.60	19.50	16.10	18.0	19.5	19.60	19.5	21.0	62	19.04	7.2	15.0	0.61	15.0
	Solvent	Proplene carbonate	Propylene carbonate		Dimethyl sulfoxide	, , , , , , , , , , , , , , , , , , ,	Propylene carbonate	Propylene carbonate 48 ml HgO - 2 ml (dist.)	Propylene carbonate 40 ml HgO - 10 ml (dist.)	Propylene carbonate 45 ml H ₂ O - 5 ml (dist.)	Propylene carbonate 50 ml H ₂ O - 2 ml (dist.)	Propylene carbonate			Propylene carbonate H ₂ O - 2 ml (dist.) and same Propylene carbonate	Propylene carbonate
	Electrolyte	KCNS 10 gm 50 ml solvent	KCNS 10 gm (50 ml solvent)	KNO ₃ 10 gm (40% dissolved)	Li Br - 5 gm Et M Br - 5 gm in 100 ml	Li Br - 5 gm EtaN Br - 5 gm in 100 ml	MH4C1 - 5 gm Lic1 - 5 gm in 50 ml	5.5	KCNS 10 gm 50 ml solvent							>
	Cathode Materials	C-60 carbon- graphite-MnO ₂ NH ₄ CL-glue, H ₂ O mixed and dried	C-60 carbon (air cell)	C-60 carbon- graphite-Halane coated												->
	Anode	As No. 26				Al backing plate Li strips	Cu sheet perforated Li						>	Molten Li dipped onto Cu sheet	Molten Li dipped onto Cu sheet	Cu - Li strips
	Cell Run No.	82	83	စ္က	Ę.	8	 	₹.	£	8	33	88	39	\$	7	2

Renarks		Solution yellow in Halane side. Solution clear in Li side.	Solution yellow in both chambers. Gracked membrane.	Solution in Halane side the color of motor oil. Membrane surface rough.	Li side solution yellow. Halane side color of motor oil. Some leakage of solution from cell.	Solution in Halane side orange in color. Li side light orange.	Solution in Halane side red-brown color. Li side lighter in color.	Solution in Halane side dark red. Li side light yellow. Yellow-red film on Halane surface.	ign Haiane and 1 gm MCMS added to carbode saide. Membrane is dark red in color. Solution in Haiane side dark red. In side light yellow.	Solution in Hainne side has a large quantity of loose carbon. Li side pallor in color. Membrane dark red. Graphite-Halane orange coating.	a Ao	Balane-Carbon broke on removat custos up surface. Solution yellow.	Solution red. Copper corroded - green copper salt compound.	Raiane-carbon broken 3 cm from top connector.	Carbon broken - poor run.	Solution brown. Li light tam color. Carbon broke one inch from top connection when being removed. Orange precipitate in propylene carbonate.		Solution deep red color. Li costed with a red film. Black sludge in bottom of cell. No yellow precipitate.
Ce11	2															•		→
Kembrane		1 sheet filter paper*	"Malco" ton exchange reain (0.003 in.	Fiberglass ion exchange resin-green				Fiberglass ion exchange resin-green									1 sheet filter paper	1 sheet filter papere at carbon face
CI DE	Closed	:	ı	1	;	;	;	!	!	!	%	8.0 8.0	7.	2.2	4.1 (wire) 8.1	(carbon) 3.10 1.2	1.7	;
Cell Resistan	Open	30	>100	;	;	;	28.5	29 31.5°C)	1	1	1	80	32.6	12.5	7.5	6.0 5.0	7.5	•
8	(amp/cma)	14.3 × 10 ⁻⁴	16.4 × 10-4	72.3 x 10 ⁻⁴	84.1 × 10"4	63.8 × 10-4	23.6 × 10 ⁻⁴	17.5 × 10 ⁻⁴	17.02 x 10-4	60.0 × 10 ⁻⁴	51.7 × 10-4	86.1 x 10-4	87.4 × 10-4	90.9 x 10-4	31.2 x 10"4	183.6 x 10 ⁻⁴	90.6 × 10-4	17.04 × 10 ⁻⁴
Nax.	I (ma)	L		8	200 80 in		55- rapid drop	9	\$	120- drop to 65 in 3 min.	130	165	110	190	0,	410	27.0	300
	 8	3.55		3.3	8.8	1.5	3.4	3.30	3.10	3.40	2.30	2.15	3.90	3.35	0.83	3.10	2.90	3.20
3	Area (cm ²)	25.20	25.90	23.5	23.8	23.45	23.28	22.75	23.45	20.0	23.2	19.2	16.32	20.9	22.4	25.6	29.75	17.8
	Solvent	Propylene			+													→
	Electrolyte	KCNS	50 ml solvent					→	Saturated with argon prior to run	ECNS 10 gm 50 ml solvent								->
	Materials	As No. 42								→	C-60 carbon impregnated with Halane dissolved in	1 gm Halane	1 gm Halane	1.58 Halane	C-60 carbon O ₂	2 gm KIC14 on C-60 carbon	1.58 gm Halane	1 gm KiCle 0.8 gm graphite wet with acetone
	Anode	+							→	Li electro- plates on Cu sheet (satu- rated Li Cl - propylene carbonate	Li dipped	_						→
1																		
	Li Kex. CD Resistance il Membrane Cell	Cathode Electrolyte Solvent Area (cm²) (amp/cm²) Open Closed Resistance 2 Resistance 3 Resistance 2 Resistance 3 Resistanc	Li Max. CD Resistance Area CC atbode Electrolyte Solvent Area CC	Li Materials Solvent Area OCV I (ms) (amp/cm ⁴) Open Closed Resistance G Weebrane Type As No. 42 NGRS Propylese 25.20 3.55 360 to 100 14.3 x 10 ⁻⁴ 30 1 sheet III So ml solvent 25.90 2.50 0.4 to 16.4 x 10 ⁻⁴ >700 "Raico" ion 2.70 42.5 in 2.70	Cathode Electrolyte Solvent Area OCV I (as) Camp/cm ⁴ Open Closed Membrane Type As No. 42 10 gm carbonate 25.20 2.35 3.55	Li Materials Solvent Area OCV I (ms) (amp/cm²) Open Closed Type (carbode Electrolyte Com²) 3.50 to 100 14.3 x 10 ⁻⁴ 30 1 sheet III Solution yellow in Halane and the carbonate 25.20 2.50 0.4 to 18.4 x 10 ⁻⁴ 3700 "Raico" ion Solution yellow in Doth of Eracked seedbrane eracking carbonate 23.90 2.50 0.4 to 18.4 x 10 ⁻⁴ 3700 "Raico" ion Carbonate 23.90 2.50 0.4 to 18.4 x 10 ⁻⁴ 3700 "Raico" ion Carbonate 23.90 2.50 0.4 to 18.4 x 10 ⁻⁴ 3700 "Raico" ion Carbonate Carbonate 23.90 2.50 0.4 to 18.4 x 10 ⁻⁴ 3700 "Raico" ion Carbonate Solution in Halane side the Carbonate Carbonate 23.50 0.4 to 18.3 x 10 ⁻⁴ 3700 "Falso" ion Carbonate Solution in Halane side the Carbonate Solution in Halane side the Carbonate Solution in Halane side the Carbonate Solution is solution from color oil. Some	Li Materials Cathode Electrolyte Solvent Area OCV I (ms) (amp/cm²) Open Closed Open Colosed Type (cm²) (amp/cm²) Open Closed Type Type So 25.20 3.59 360 to 100 14.3 x 10 ⁻⁴ 30 1 sheet III sheet III so min. So ml solvent acronate 25.90 2.50 0.4 to 16.4 x 10 ⁻⁴ >700 "Falco" ion sechange real in thickness in schemes 23.5 3.3 170 72.3 x 10 ⁻⁴ Thickness in schemes 10.033 in. Hinchness in schemes 23.5 3.3 170 20 18.3 x 10 ⁻⁴ Thickness in schemes 10.033 in. Hinchness III schemes 10.034 in. Hinchness III schemes III sche	Cathode Electrolyte Solvent Li	Cathode Electrolyte Solvent Lia Camp Camp Closed Membrane Type Cathode Solvent Area Carb Camp Closed Closed Membrane Type Carb Camp Closed Closed Closed Type Carb Carb Carb Closed Closed Closed Type Carb Carb	As No. 42 As No. 42 As No. 44 As No. 45 As No. 45	Cathods	Cathode Riscitalis Solvent (car) (as) (as) (as) (as) (as) (as) (as) (as	Cathode Riscitality Solvent Aria Cathode Cat	Cathods Electrolyte Solvent Cars Cars Cathods Cathod	Calibries Cali	College	A	1

Ē	Kebarks	Heavy orange precipitate. Li coated, also.	Solvent pale yallow. Paper orange. No precipitate.	Paper orange colored. Black costing on paper next to carbon. Solution orange.	Yellow precipitate. Red liquid.	Electrodes placed against membrane on opposite sides. Spacer placed behind electrodes to wedge them firmly against membrane. Tellow-orange precipitate and color on carbon side. Clean on Liside.	Li side solution clear. Gray costing on carbon Ralane.	Orange precipitate on back of carbon. Liquid deep red in color.	Li dark gray.	Cathode has heavy orange coating. Li good. Liquid orange on cathode side, clear on Li side.	
Cerr	Type	ıı	=	=	=	111	III	=	Ħ	111	111
4		1 sheet filter paper*	2 sheets filter papers against carbon	2 sheets filter paper* 1 spacer and 1 spacer wedge behind Li electrode	2 sheets filter paper*	Green ion- exchange resin (soaked in propylane carbonate KCNS over- night)	Green ton- exchange reath (soaked in propylene carbonate KCNS over- night)	i sheet filter paper and 1 spacer	1 sheet filter paper* and 1 spacer between electrodes	Green ion exchange resin	Green ion exchange
æ	Closed	17.6	12.0	1	1 min. 20	1	1	;	ł	;	!
Cell Resistance	Open	13.6	4	ı	1	ŀ	at end of		6 6 7	40 at finish	200.12 200.08 8 nd
8	(map/cm ^s)	57.1 x 10 ⁻⁴	1116.8 x 10"4	Fun at 50 ma						33.5 × 10 ⁻⁴	49.2 x 10 ⁻⁴
Max.	1 (mm)	100	180 dropped to	Tine II	01	9	0	991	01	72	110
Ş.	3	5.58	6.4	8.60	8. 10.	3.40	9.60	3.62		£0.40	3.40
3 5	(Cmg)	17.6	15.4	16.8	91	24.75	2. 4.	21.78	17.55	21.45	23.4
Solvent		Propylene carbonate	30 ml used	25 ml used	25 ml used	25 al used	30 Bl used	30 ml used	30 ml used	30 ml used	30 ml used
Electrolyte		35 ml of No. 7 cut propylene carbonate plus 7 gm KCNS (dried) saturated solution	KCNS 10 gm (50 si solvent)								→
Cathode	Materials	2 gm Halane 0.8 gm graphite powder, Mix with acetone on prewet carbon	1 gm ethylene diamine KiCl4 0.8 gm graphite mix with ace- tone spread on C-60 carbon	2 gm Halane 0.8 gm graphite as above	2 gm Halane 0.8 gm graphite powder	2 gm Halane 0.8 gm graphite powder	2 gm Halane 0.8 gm graphite powder	2 gm KICl4 0.8 gm graphite wet with acetone and spread on C-60 carbon	2 gm KICL, 0.8 gm graphite (acetone wet and spread on carbon)	2 gm Haiane 0.8 gm graphite wet with ace- tone and spread on C-60 carbon	2 gm KICl4 0.8 gm graphite
Anode	Materials	Li dipped onto Cu in dry box									>
Ce11	Š.	2	22	#	8.2	6.	8	81	88	88	2

APPENDIX B - PART 1 (Continued)

ml - milliliter

gulte e e e e		Costing aloughed off cathods into bottom of cell solution otherwise colorless:	Both electrodes against membrane spacers behind them. Li Conting red - Obvious leakage. Li side deep red and clear. Garbon side deep red with orange precipitate.	Solution coloriess except for graphite in liquid. Solution yellow color on Li.	Caked orange precipitate on side away from carbon. Solution pale orange. Heavy orange precipitate.	Paper red-orange in color. Solution deep red in color.	Cathode coating facing away from Li anode (rerun - No. 91).	Papers white. Solution very pale yellow. Very little loose graphite in solution. Costing sasily removed from carbon surface.	Lis surface yellow. Paper has large amount precipitate. Orange-red. Back of carbon yellow-orange precipitate. Solution dark red.
Ce11	Type	I	111	=	=	3	Ħ	#	=
Kembrene	memor and	1 sheet filter paper* sgainst cathode and 1 spacer between	Green ton exchange resin	i sheet filler paper* against graphite, i spacer between	1 sheet filter paper* against Di,** 1 spacer between	A sheet filter paper* sgainst cathode, I apacer between electrodes	d shoots filtor payer*	4 sheets filter paper*	Green ion exchange reain I sheet at cathode
ß	Closed	1	1	1	!	+	1	1	:
Cell Resistance A	Open	12.3 at finish	7.42 21 at finish	6.25 8.4 at finish	18.3 at finish	7,15 18,5 at finish	8 11.6 at finish	6 10.6 at finish	38.8 RT-27°C
8	<u>`</u>	142 × 10-4	24.0 x 10 ⁻⁴	93.8 x 10-4	100 × 10 ⁻⁴	222.5 x 10 ⁻⁴	87 × 10-4	116 × 10 ⁻⁴	4.52 x 10 ⁻⁴
Max.	(i)	920	00	0 90 11	200	24	23.0	0	10
ě	à	3.80	3.45	3.10	3.50	e.	2.78	ය. ක ව	3.39
3	(cmg)	17.6	20.8	2.2	30	50	4.	24 .09	22.11
	Solvent	Propylene carbonate	30 ml used					→	25-30 Bl used
-	Electrolyte	KCNS 10 gm 50 ml solvent							→
Cathode	Materials	I gm KCN I gm KCN I gm KCN I gm graphite wet with ace- tone spread on C-60 carbon	2 gm KIC14	0.8 gm graphite wet lightly with propylene carbonate and spread on C-60 carbon (prewet with propylene with propylene	2 gm Di** 0.8 gm graphite wet ikehtly with propylene carbonate and spread on C-60	garbon 2 gm KIC14 0.8 gm graphite wet with propy- lene carbonate and spread on C-60 carbon	2 gm S 1 gm KCN 0.8 gm graphite 0.1 gm FVA resin-acctone wet with propy- lene carbonate on C-60 carbon baked 1 br at	2 gm SS 2 gm SS 2 gm SS 3 gm SS 3 gm SS 3 gm ST sephite 0.1 gm PVA	90°C 2 gm KICla 0.8 gm graphite wet with propy- lene carbonate spread on C-60 carbon
Anode	Materials	Li dipped on Cu in dry box					11.71		→
Ce11	Run No.	85 52	8	80	88	0.	0 6	i 6	8

APPENDIX B - PART 1 (Continued)

APPENDIX B - PART 1 (Continued)

٠.					·				
	Remarks	Paper still white at finish of run. Li clean and no pallow film, ECN conting still on carbon but easily removed. Solution - water clear.	Li clean and shiny. Costing still insect on carbon. Solution light pellow in color.	Li hes yellow coating. Cathode red- orange color on paper. Solution slightly yellow in Li side. Solution slightly red in carbon side.	Wellow precipitate. Red liquid. Button soft and falling spart.	Liquid very pale yollow.	Liquid dark red. Copper showing through graphite coating - corrosion of Cu.	Faint gray conting on Li. First paper at cake - orange-red. Fourth paper faint yellow. Graphite coating in good condition after run. Orange-red coating on Halane cake.	i sheet Cu coated with "Aidag" No. 154. I cost based it her at 100°C. Green coating over Aidag film where cake was in contact. Filter papers orange in color. Yellow coating on cake. Cake itself soft and mushy. Warm to touch.
	Cell	=======================================	=	:	#	Ħ	111	111	II
	Membrane	1 sheet filter paper on carbon	A sheet falter paper*	Green ion exchange resin 1 sheet filter paper* at cathode	filter paper	1 sheet filter paper*	4 sheets filter paper*	4 sheets filter paper*	4 sbeets filter paper*
	nce A	I	•	ţ	1	I	;	ŀ	•
	Cell Resistance A	12.60	# C # v • • •	2.5 70 RT-28°C	ı	47 tr. 20 60	4. c	e e e 4	6.0 14.92 (finish)
	<u> </u>	71.4 × 10 ⁻⁶	н 10-4	4.04 × 10 ⁻⁴	× 10-4	5.71 x 10"4	x 10*	x 10-4	* 10_4
	CD (amp/cm²)	*: 	25.0	8.	3	17.6	8 01	120.5	e
	Max. I (ma)	200	0	91	00 e	07	300	250	260 drop to 140 immed,
	Š	2.70	2.10	3.40	ed es	6 8 8	2.30	3.10	0.6
	Area (cm ⁸)	38 .0	07	24.75	17.5	17.5	18.5	20.75	10 10 15
	Solvent	Propylene carbonate 30 ml used					>	25 ml used	25-30 ml used
	Klectrolyte	KCNS 10 gm 50 al solvent							
	Cathode	1.0 gm KCM 0.8 gm graphite wet with acs- tone 0.1 gm PVA resin (Flex- bond) spread on C-60 carbon and baked 1 hr and baked 1 hr	2 gm suitur 1 gm ECN 0.8 gm graphite 0.1 gm PVA resin acetone spread on C-60 carbon baled 1 hr st 90°C	As No. 92 except electrolyte solution on both sides of membrane	2 gm Halane 1 gm ggraphite 1 mortar and 1 psette piaced and pressed and pressed and pressed 1 in. x 5 mm was formed. Graphite Graphite Graphite Graphite	2 gm sulfur 1 gm KCN 0.8 gm graphite 0.1 gm PVA resin (scetone) on C-60 carbon- dry 1 hr at 90°C	Cake No. 3	Cake No. 3	24 gm Halane 9.6 gm graphite pressed into cake form in mold. A rec- tangular prece cut out to fit into poly- ethylene spacer ethylene spacer
	Anode	Cu in dry box							
	Cell Run No.	8	4	6	90	26	86	66	100
1		·							

(dist.) - Dist

ml - millilit

1 1 1 1 1 1 1 1 1 1													
Part		Notice to the state of the stat	End sheet of Cu given two coats No. 154 Aidsg - 30 min. Bake between coats at 100°C - between first and second coat. Brown coat on graphite (Aidag) when rinsed. Blue-blink coating on surface. Paper against cake yellow. Fourth paper white. Cake No. 4 in good condition, alightly yellow color on surface. Solution orange-red in color.	(Double cell.) Li No. I pellowish tinge. Paper yellow-reddink liquid against Li face. Cake No. I stuck to paper and soft. Li No. 2 reddish liquid against Li face paper yellow. Cake No. 2 soft and stuck to paper.	Cell-double-anode-cathode. Cake No. 1 paper With Li Liear. Cake consacted Lid due to short paper. Li No. 1 good. Cake No. 2 soft. Cathode copper deposited on Aldag film about 50% of area. Li No. 2 slight darkening of surface.	Green costing on Aidag fills. Li - gray coeting. Solution clear in Li side. Red-brown in cathode side. Faper orange at cathode face and dark yellow at membrane face. Cathode yellow on back surface, soft and mushy.	Cathode No. 1 - Cu deposit on Aldag film. Sepera white. Li No. 1 clean and bright. No. 2 Li and No. 2 cathode same as No. 1. Solution clear.	Solution dark yellow but no precipitate. Clear. Papers yellow. Li dark.	Sqlution red-brown. Papers red, all through. Coating adhered to paper when paper removed from cathode.	Solution a deep cherry red. Paper in contact with cathode dark red. Li clean. light in color.	dembrace good after run, no swelling, dissolving or tearing. Yellow-orange pre- cipitate on cathode side. None on Li- side. Solution orange (transparent) in li side of cell. Li clean and bright. Cathode coated with yellow precipitate. Li side heavy yellow precipitate.	Solution yellow. No precipitate. Li cleat. Cathode material still coating screen.	
March Calibra Calibr	Ce11	77.	111	2	2	111	à	=	=	II	Ħ	=	
According Cathodo Ca			falter paper*	2 sheets filter paper* in each com- partment	4 sheets filter paper* in each com- partment	Cellophane 2 sheets filter papers at cathode	3 sheets filter paper*	3 sheets filter paper*	3 sheets filter paper*	3 sheets (Miler paper* Chiler paper* envelope around cathode	No.	Galter paper*	
According Margerials Marg	11 Ince 0	Closed	*	1	:	1	1	1	1	1	•	Į	
Macerials Materials Mate	Ce. Resists	Open	11.1 13.6 (finish)	38 (finish)	12	700	1					1	
Macerials Materials Mate		•)	10-4	10-4	10-4	10-4	1074	10-4		10-4	101	10-4	1111ter
Material	8	(amp/cm				1.83 x				8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.		11 - 111
Manage	Mex.	(1	240	980	160	m m	120	08		Q	9	130	
Li dipped on Catabós Encirolyte Solvent Li dipped on Catabós 6. 45 Li dipped on Catabós 6. 45 Li dipped on Catabós 6. 45 Li atrip(Cu o Encirol)te and concession on backplate on backpla	į	8	3.15	1.1	5. 6 0	2.60	4.10	3.90	9.8	1.50	3.20		
Li dinde Cathods Electrolyte So Indepte Inde	3.	C C C C C C C C C C C C C C C C C C C	18.2	29.0	37 . 25	18.0	35.0	10.7	20	10.16	21.38	10.18	111ed
Li dipped on 16 gm Halate Li dipped on 16 gm Halate Bu in dry box 16 gm Halate Bu Halate Bu Halate Bu Halate Bu Halate Cake No. 48 Cake No. 58 Sm Fraphite O. 8 gm graphite O. 9 gm graphite O. 2 gm graphite O. 3 gm graphite O. 3 gm graphite O. 4 gm graphite O. 5 gm graphite O. 5 gm graphite O. 5 gm graphite O. 6 gm graphite O. 6 gm graphite O. 7 gm coulty Cake No. 48 Cake N		Solvent	Propylene carbonate 25-30 ml used				>	50/50 ml \$ DMS propylene carbonate	Propylene carbonate			>	
Materials Materials Li dipped on Cu in dry box Backplate) (2) Li strip On bakelite backplate (1) Li strip on backlite backplate backplate (2) Li strip (1) Li strip (2) Li strip (3) Wataan Filter		Electrolyte	KCNS 10 gm 50 ml solvent										
102 Li strip (cu backplate) 104 Li strip (cu backplate) 105 Li strip (cu backplate) 106 Li strip (cu backplate) 107 (2) Li strip (cu backplate) 108 Li strip (cu backplate) 110 (1) Li strip (cu backplate) 111 (2) Li strip 112 (1) Li strip 113 (1) Li strip 114 (2) Li strip 115 (1) Li strip	Cathode	Materials			16 gm graphite 16 gm CuO 0.8 gm PVA dis- solved in ace- tone. 8-10 ml added to cake	Cake No. 48	16 gm CuS 16 gm graphite 0.8 gm PVA resin	Porous carbon 2 gm Halane 0.8 gm graphite	Porous carbon 2 gm Halane 0.8 gm graphite	4.0 gm graphite 4.0 gm CuBra 0.2 gm Lucite dissolved in ettylene di- chloride mix together grind in mortar and pastle, spread on silver screen, bake streen, bake	Porous carbon 2 gm Halane 0.8 gm graphite	Silver acreen O.2 gs graphic Silver precipitate metal O.5 gs Silver obloride O.5 gs	r Paper
80. 101 101 101 103 103 103 103 111 111 111	Anode	Materials	dipped on in dry box				→	atrip(Cu	(2) Li strip m bakelite mckplate	1) Li strip on bakelite oackplate	(2) Li strip	(1) L4 strip	Whatman Filter
	Ce11	No.	101 C _D	102	103	104	105						

	Remarks			paste had worked off carbon.	Solution yellow. Heavy orange precipitate. Papers yellow to orange. Yellow-orange costing on Li and cathode.	Solution clear. Paper white. Li good. Peroxide silver am in good condition on carbon surface.	Pormax bag bisck in color (dark gray originally). Orange precipitate in bag, also loose graphite. Li good.
	Ce11	2	=		=	=	Ħ
	Membrane		Pormax		3 sheets filter paper*	1 filter bag 2 sheets filter paper*	Pormax (heat sealed to form a bas)
	1 nce ន	Closed	;		1	1	!
	Cell Resistance A	Open	;		1.	13.5 25 at end of run	क 10
1nded)		-	107		10-4	: 10"4	1074
ART 1 (Conc	8`	(amp/cm	137.9 × 10 ⁻⁴		141.5 x 10 ⁻⁴	111.1 × 10"4	90.5 x 10 ⁻⁴
APPENDIX B - PART 1 (Concluded)	Max.	(mm)	140		290	160 drops repidly	700
APP	ě		2.30		. 98	2.65	
	L1 Area	(cm ²)	10.16		20.5	14.4	11.05
	Solvent		Propylene carbonate 30 ml used				
	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2000	KCNS 10 gm				
	Cathode	Materials	1 gm Di** 2 gm graphite 0.2 gm KBr	ground with 4 ml propylene carbonate in mortar and pestle porous carbon	Li (dip ct) 2 gm Halane on moly strip 0.8 gm graphite (dry box)	1.5 gm Ag ₂ O ₂ 1.5 gm pre- cipitated silver metal	enough propy- lene carbonate to make a paste on C-60 carbon 2 gm Halane 0.8 gm graphite
	Anode	Materials	Li strip on bakelite backelate		Li (dip ct) on moly strip (dry box)		
	Cell	N o	113		114	115	116

** Di - Dibromantin

	7					<u> </u>						;
Xees xx		Copper quite deeply eroded from molten Li.	Anode side clear. Cathode side orange color.		Orange solution in dibromantin side. Paper and graphite solution colored red.	Solution orange color on Li side and on graphite side.	Solution orange on Li side. Clear on sulfur side.	Solution dark red in cathode side, and light red in anode side.	Solution deep red in graphite side. Yellow to orange in Li side.	Solution colorless. Large amount graphite powder floating in solution.	Solution clear.	Solution red-brown. Cu deposit on graphite front and back.
Voltage		Helene 0.3	Ralane	2 O	Dibromantin -0.66	Graphite -0.0005 -0.0003	s 1.00	-0.18	Dibromantin -0.12	CuO 1.90 1.95	CuD 1.08 1.20	CuF ₂ 0.4 0.68
Half Cell Voltage		0CV, 2.0	L11 OCV 3.05	L1 0CV, 3.16	L1 OCV, 2.56 2 ma, 2.70	L1 OCV, -0.0005 2 ma, -0.0003	L1 2.56	Li 3.20	L1 2 ma, 3.02	ii OCV, 2.85 1 ma, 2.85	Li OCV, 2.45 1.1 ma, 2.62	L1 OCV, 2.20 1.5 ms, 2.52
Ce11	e a	<u> </u>	 ::	<u> </u>	- 8 m	8 m	~		ď	# 8 ·		
Membrane		Pibergiass I ton exchange resin - green		1	Green ion E	, , , , , , , , , , , , , , , , , , , ,				2 sheets filter paper*	1 sheet filter paper*	2 sheets filter paper
n.	Closed	:	1	1	1	1	1	ı	:	e -i	;	:
Cell Resistance Ω	_	:	48	06	10.2	8. 8.	2.8 on 35 ms cell 26.5	33.2 ce11 2.9 c.c. 80 ms	:	n.	1.1	Total 1.2 4.4
8	(amp/cm²)	37.0 × 10 ⁻⁴	16.0 x 10-4	25.7 x 10 ⁻⁴	176.7 x 10 ⁻⁴	27.8 x 10"4	30.3 x 10 ⁻⁴	37.5 x 10-4	37.4 x 10 ⁻⁴	50.9 × 10 ⁻⁴	78.7 × 10 ⁻⁴	134 × 10 ⁻⁴
Max.	(40)	0	£	80. 80.	410 dropped to 225 in 15.5 min	0	20	3	e e	110	170	300
Š	- 1	e.	3.20	2.43	3.30		1.10	8 8	2 . 8 . 8 . 8 . 8	0.55	1.67	2.30
L1 Area	(CE 8)	21. 6.	23.1	22 . 6	23.2	21.6	3 0 . 8	21.6	21.6	21.6	21.6	22.4
Solvent	1894 100	Propylene carbonate 30 ml used		-								→
Electrolyte	precional	ECNS (30 Em solvent)									_	→
Cathode		10 gm Halane 5 gm acetylene black (animal) 24 ml acetone spread on C-60 drach	Halane- acetylene black 0.88 gm of coating	2 gm sulfur 6 gm graphite powder 4.29 gm coating on carbon	1 gm Di** 2 gm graphite	4 gm graphite powder 4 ml acetone 0.1 gm D-13 Flexbond resin	2 gm graphite 2 gm sulfur	2 gm CuCl ₂ 2 gm graphite powder 0.1 gm D-13 Creatn acetone. Dried film on C-60 carbon in vac. owen at vac. owen at	2 gm Di** 2 gm graphite powder 0.1 gm D-13	2 gm Cuo (wire) 2 gm graphite powder 0.1 gm D-13	2 gm CuO fine powder	2 gm CuFs 2 H ₃ O 2 gm graphite powder 0.1 gm D-13 resin acetone
Anode	Materials	Li dipped on Cu in dry box										→
Cell Run	No.	22	23	4	ŝ	\$	57	8	60	09	2	88

APPENDIX 8 - PART 2

		·		
Remarks		Li good Solution black-green Naterial on bottom of cell. Cathode deteriorated.	Solution yellow-brown. Filter papers yellow. Li good.	Solution red-brown. Papers red.
Half Cell Voltage		Li ma, 2.42 approx.	Li Halane OCV, 2.92 -0.36 1.9 ma, 2.92 -0.35	Li Halane OCV, 2.88 -0.23 2 ms, 2.88 -0.08
Cell	Type	111	111	₩ ₩ ₩
		2 Sheets filter paper*	2 sheets filter paper*	2 sheets filter paper*
ree R	Closed	1.3	7.2	at an coi
Cell Resistar	Open	T. 7	7.3	12.40
g	(amp/cm*)	144.2 x 10 ⁻⁴	166 × 10 ⁻⁴	164 x 10 ⁻⁴
Max.	I (BB)	300 decreases rapidly to 240 in 10-15 sec	350 decreases rapidly to 210 (2 min)	310 decreases rapidly
000		1.90	2.90	2.85
L1 Area	(cm ²)	20.8	21.0	6. 6.
Solvent	- 1	Propylen carbonat 30 ml		→
Electrolyte		KCNS 10 gm 50 ml solvent		→
Cathode	Materials		2 gm Halane 2 gm graphite 2 gm KCNS 0.1 gm D-13 resin acetone	2 gm Halane 1.5 gm graphite 2 gm KCNS 1 gm KBr 1 gm D-13 acetone ground together
Anode	Materials	Li dipped on Cu in dry box		→
Cell Run	Ñ.	63	84	ن ن
	Anode Cathode Electrolyte Solvent Area OCV Max. CD Resistance A Membrane Cell Haif Cell Voltage	Abode Cathode Electrolyte Solvent Area OCV I (ma) (amp/cm²) Open I (ma)	Abode Cathode Cathod	Materials Mate